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ABSTRACT
Modeling human decision making in strategic problem do-
mains is difficult with normative game theoretic approaches.
Behavioral aspects of this type of decision making, such as
forgetfulness or misattribution of reward, require additional
parameters to capture their effect on decisions. We propose
a descriptive model utilizing aspects of behavioral game the-
ory, machine learning, and prospect theory that replicates
the behavior of humans in uncertain strategic environments.
We test the predictive capabilities of this model over data
from 43 participants guiding a simulated Uninhabited Aerial
Vehicle (UAV) against an unknown automated opponent.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning—Parameter learn-

ing

General Terms
Human Factors, Experimentation

Keywords
reinforcement learning, behavioral game theory, human de-
cision making, models

1. INTRODUCTION
In strategic, uncertain environments, human decision mak-

ing may not always adhere to normative decision theoretic
models. When tasked with making decisions in these do-
mains, humans do not always exhibit a clear memory of past
experiences. In addition, rewards from neighboring strate-
gies may have an impact on decisions, as humans tend to
spill over rewards from one strategy to another [9]. Essen-

tially, human decision making patterns include several cog-
nitive biases which influence their chosen strategy.

Several behavioral game theory models exist for represent-
ing human decision making [1, 2, 7, 8]. Many of these models
rely upon reinforcement learning and represent learning as
the perceived reward of interaction within an environment.
The application of these game theory models is limited to
single-shot and repeated games which are represented in nor-
mal form.

In real-world strategic domains, the environments are largely
sequential and uncertain. Reinforcement learning is well ex-
plored in these types of problem domains, for which the
popular reinforcement learning technique, Q-learning, has
been developed [5]. The Q-learning function determines the
optimal set of strategies to maximize the total reward by an-
alyzing immediate rewards and potential future rewards as
a game progresses from state to state. Current applications
of this technique apply to purely rational decision making.

This paper presents a study conducted with human sub-
jects to observe decision making patterns. Participants in
these studies were given the task of observing an unmanned
aerial vehicle (UAV) navigate through a series of sectors (in
a 4x4 grid) and assessing the likelihood of their UAV reach-
ing a goal sector without being detected by an automated
enemy UAV (whose location is largely unknown). The pri-
mary hypothesis of this experiment was to determine if in-
centivizing their assessment via proper scoring rules would
improve assessment techniques. The secondary hypothesis,
and the focus of this paper, was to discover if participants
were learning in this environment and, if so, to model the
participants’ learning. While the investigation into incen-
tives does not prove to be a significant result, we observe re-
markable learning and provide an aggregate learning model.

Reinforcement learning is a convincing model for this do-
main. The UAV problem, while including another agent,
can be modeled as a single-player game, where the partici-
pant does not model the enemy. The enemy UAV is revealed
to the participant as moving in a deterministic fashion. The
participant will always lose if they follow the same trajec-
tory and are in the same state (after the same amount of
moves) that caused a loss in a previous iteration of the game.
Therein, the enemy is a part of the game’s environment, and



need not be modeled explicitly by the participant.
The task of probability assessment in human decision mak-

ing is also subject to biases [6]. When a participant states
their probability assessment, it may not be equivalent to
their believed probability of success. When rewards are non-
deterministic, such as in gambling, there is much evidence
that humans, in general, underweight or overweight their as-
sessments at the extreme cases (near 0% or 100%) [4]. Sub-
proportional probability weighting functions map believed
probabilities to expressed assessments, which is generally
not a linear mapping, as in the normative case.

While behavioral game theory, sequential reinforcement
learning, and probability assessment mapping are well ex-
plored, combining them to a single model is a novel ap-
proach. We establish a formal model that attributes behav-
ioral affects to sequential domains of uncertainty and aug-
ment assessment with a subproportional probability weight-
ing function. We test its predictive capabilities over a data
set of 43 participants. Our results indicate that this de-
scriptive version of the Q-learning model shows significant
gains over the respective normative version, as well as other
baseline comparative models.

By utilizing a behavioral game theoretic model to predict
human decision making, we can gain insight into the biases
that humans suffer from when faced with strategic uncer-
tainty. Models, such as our descriptive Q-learning model,
are able to illustrate human learning and predict decisions
that they make in strategic domains. Analyzing the pa-
rameters fit to these models measures the impact that these
cognitive biases have.

2. EXPERIMENT: PROBABILITY ASSESS-
MENT FOR STRATEGIC DECISION MAK-
ING

In a large study conducted with human participants, we
investigate probability assessment elicited during a strategic,
uncertain decision making game. We begin with a descrip-
tion of the game followed by a discussion of the methodology
used to collect participant assessment data. We conclude
this section with a description of the results generated in
this study.

2.1 Study: UAV Game
To test the assessment techniques of human participants,

we created a strategic game of uncertainty utilizing a graph-
ical representation of a gameboard. In this sequential game,
participants observe a UAV (hereafter participant’s UAV )
moving through a 4 x 4 sector grid from an initial sector
towards a colored goal sector. Participants are given the ini-
tial location of another UAV (hereafter enemy UAV ), but
no other information about its movement or successive loca-
tions. A trial (the completion of one trajectory) is consid-
ered a ”win” if the participant UAV reaches the goal sector,
or a ”loss” if it is caught by the enemy UAV.

Fig. 1 represents the first two sectors visited (or decision
points) of a trial. The gameboard grants clairvoyance of the
entire trajectory for the current trial, the initial location of
the enemy, and the already traveled course.

The goal of the experiment was to gather the assessments
of the overall likelihood of a trial’s success from participants.
Given the knowledge of the initial location of the enemy, as
well as the growing knowledge of its movements based on

(a)

(b)

Figure 1: Two decision points of a given trial in
the UAV game. The participant knows the enemy
location only on the first decision point.

losses, this game exemplifies a learning task.

2.1.1 Participants
43 participants were included in this study. Participants

were pulled from a pool of undergraduate students taking
introductory psychology courses in our university. Partic-
ipants were paid via a variety of payment mechanisms for
their time. As the initial hypothesis of incentivization tech-
niques was inconclusive, we included all participants, regard-
less of this effect, in this paper.

2.1.2 Methodology
Participants play 20 total trials of the game. Two initial

phases, representing the training phases of the game, con-
sist of 5 trials each. At the end of each of these sets, the
participant undergoes an intervention, in which the proctor
of the experiment highlights participant assessments which
are too high or too low.

At each decision point, the participant is required to fill
out a questionnaire. In the questionnaire, the participant
notes the direction the UAV will move and their estimation
for the probability that the participant UAV will, without
being caught, arrive in the next sector and the eventual goal
sector. After filling out the questionnaire, the participant
may move onto the next slide of the game.

2.1.3 Results
Participant data was broken up into two discrete data sets:

trials resulting in wins and those resulting in losses. We an-
alyzed the data for trends within the trial (as the UAV ap-
proached the goal sector) and between trials (as participants
became more familiar with the game). We expect, as a trial
progresses, that a participant will assess higher likelihoods
of success as they approach the goal sector. Additionally,



as the game progresses, the participant should become more
confident in their assessments.

Table 1: Slope analysis of results
Trend Estimate P-value
intercept 0.3315 <0.0001
slope within trial 0.02053 0.0016
slope across trials -0.00486 <0.0001

(a) Losses

Trend Estimate P-value
intercept 0.5392 <0.0001
slope within trial 0.05395 <0.0001
slope across trials -0.00129 <0.0001

(b) Wins

Table 1 above annotates the results of running a gener-
alized linear mixed effect regression analysis over our data
with random intercept and slope at the decision point and
trial level. Our results indicate that the estimates given for
each point is significant.

When considering assessments as a trajectory progresses,
participants generally increase their assessments as they ap-
proach the goal sector. The rate by which a participant’s
stated probability increases for winning trajectories is greater
than losses. This is to be expected, as participants will be-
come more familiar with the possible movement of the en-
emy, they will become better at predicting eventual losses.

As participants complete trials, the slope of the change in
elicited probabilities decreases significantly. This decrease
in slope indicates that participants are not changing their
probability assessments as much as they were in previous
trials, representing a general increase in confidence of the
participant’s guesses for both wins and losses. The ideal
case is that, as participants learn how the enemy is moving,
their slope across trials will approach 0.

With the clear trends towards generally increasing assess-
ments as trials progress and the relative growth of confi-
dence as participants complete trials, these results indicate
a strong justification for the application of a learning model.

3. DESCRIPTIVE MODEL FOR REINFORCE-
MENT LEARNING

Our model is an extension of the popular reinforcement
learning algorithm known as Q-learning. By attributing con-
cepts derived from behavioral game theory to Q-learning,
we establish a novel framework for descriptive reinforcement
learning. Additionally, borrowing from concepts in prospect
theory creates a better mapping of true beliefs to expressed
probabilities.

3.1 Normative Q-learning
Q-learning is a popular machine learning model for repre-

senting learning in sequential domains. It characterizes the
reinforcement learning problem as a conjunction of previ-
ous information and future rewards, decayed by a discount
parameter, γ. Q-learning is an algorithm that exemplifies
exploration vs. exploitation, which prefers possible future
payoffs or previously learned payoffs, respectively [5]. This

decision is mediated by the learning parameter, α. Equation
1 shows the standard Q-learning function.

Q(s, a) = Q(s, a)+α(r(s)+γmaxa′Q(s′, a′)−Q(s, a)) (1)

This function serves as a powerful mechanism to model
learning with long-term optimality. However, it does not
exemplify the behavioral aspects of human decision making.
With the concepts derived from behavioral game theory, we
can apply descriptive parameters to the Q-learning function.

3.2 Behavioral Q-learning
The inspiration for the descriptive model is derived from

behavioral game theory. Several game theoreticians [2, 9, 3]
have investigated human biases as associated with problems
of decision making. Their investigations are uniquely in the
context of single shot and repeated games.

3.2.1 Behavioral Reinforcement Learning
Game theory seeks to analyze and explain the mechanisms

by which decisions are made [1]. Assuming that participants
understand the game, the environment, and make decisions
in a purely rational manner, applicable game theoretic mod-
els will be able to predict the behavior of a human. This is
rarely the case in reality, however. Cognitive biases plague
the human decision making process, leading to seemingly
subrational decisions. Behavioral game theory models learn-
ing with these biases in consideration.

Several models exist that attempt to express learning within
decision making domains. The reinforcement learning algo-
rithm portrays learning as a function of interaction with an
environment and the immediate rewards. As an individual
moves through the world, it experiences stimuli that it at-
tributes to doing a particular action. Algorithmically, the
reinforcement learning algorithm can be characterized as:

Ac(t) = Ac(t − 1) + r (2)

The attraction to doing a strategy c at time step t is the
previous attraction to doing strategy c and its immediate
reward. An attraction may be implemented in many ways,
but it is essentially a concept representing the desirability
of taking a particular action.

Insights from behavioral game theory have provided pa-
rameters that better explains the irrational behavior that
arises in human decision making [2]. Such concepts include
forgetfulness (the event of previous information degrading
in effect on future decisions) and spillover (the phenomenon
of humans attributing rewards to neighboring strategies).
Behavioral reinforcement learning can be expressed as:

Ac(t) = φAc(t − 1) + (1 − ǫ)r (3)

An(t) = φAn(t − 1) + (ǫ)r (4)

φ represents the forgetfulness parameter, ǫ represents the
spillover parameter, and An represents the attraction to
strategy n, which is a neighboring strategy to c. Both pa-
rameters are bounded between 0 and 1.

Forgetfulness in the context of our domain would imply
that the experience from a previous trial has a diminished ef-
fect on current experiences. Spillover generally involves the
misattribution (or ”generalization”) of rewards to neighbor-
ing strategies. An illustrative example is that of the roulette



player who places a large bet on a particular number, only
to have it land on a nearby number [9]. The player may
have his guess confirmed, since the ball was near their bet,
regardless that they lost the bet.

The implementation of the spillover parameter can be con-
ceptualized in a few different ways for our UAV domain.
Neighboring strategies can be viewed as nearby sectors, di-
rectly adjacent to the sector arrived at. Since the enemy
moves in a deterministic pattern, the amount of moves that
have transpired is directly related to the current location
of the enemy. With this in mind, spillover can also occur
between these time steps. Figure 2 exemplifies the various
models that could represent spillover in this domain.

With Camerer et al.’s introduction of behavioral param-
eters in human decision making, we now introduce our Q-
learning function as inspired by these concepts.

3.2.2 Modified Q-learning Function

Q(s, a) = φQ(s, a)+α((1−ǫ)r(s)+γmaxa′Q(s′, a′)−φQ(s, a))
(5)

Q(sn, a) = φQ(sn, a) + α((ǫ)r(s) − φQ(sn, a)) (6)

φ, as with its behavioral game theory counterpart, rep-
resents the forgetfulness parameter, which decays the value
of previous information associated with that state (in our
case, waypoint sector). α mediates between exploration or
exploitation, and additionally decays future payoffs to better
value current information about the state as it approaches
1. If ǫ is greater than 0, the neighboring states (notated
as sn and includes all sectors that are 1 move away) gain a
fraction of the reward observed [2] [7].

The future payoff calculation in the Q-learning function
is of questionable application to our problem domain, how-
ever. In essence, maxa′ assumes that the future state-action
pairs will be the optimal choice. Participants in our problem
domain do not select the movements of the UAV, however.
With clairvoyance over the trajectory that the UAV will
travel, participants are likely to base their assessment on
the path revealed to them.

Q(s, a) = φQ(s, a)+α((1− ǫ)r(s)+γQ(s′, π(s′))−φQ(s, a))
(7)

Equation 7 alters the future payoff function to represent a
next state payoff from the next sector, determined from the
path revealed to the participant. π(s′) represents the action
determined from being in state s’, which, in our case, is the
next sector in the trajectory for the given trial.

4. PERFORMANCE EVALUATION
The data collected from the 43 participants from this

study were broken up into 5 folds, with 8-9 participants per
fold. Utilizing the Nelder-Mead method1, parameters are
trained over 4 folds and then, to test the predictive capa-
bilities of the model, tested over the remaining fold. For a
baseline comparison, fits were generated for the normative
model2 and compared with the descriptive model, along with

1The Nelder-Mead method is a downhill simplex method for
minimizing an objective function
2The normative model does not include any descriptive pa-
rameters. φ = 1 and ǫ = 0, while α is still trained.

the random model3 and pathological cases4.
Prior to calculating the fit of the descriptive model, we

must convert the calculated Q-value generated by the de-
scriptive model to a probability assessment that will be com-
pared to the participant data. Q-values for all states are
initialized to 0, with a Q-value of 1 being allocated to the
goal state and -1 for all loss states. Q-values approaching -1,
then, represent a path likely to lead to a loss, whereas those
approaching 1 indicate a possible win from that path. To
convert these values to assessments, then, involves normal-
izing the Q-value between 0 and 1. The resulting conversion
is then used as the Q-learning function’s assessment.

Fits were generated by taking the squared distance be-
tween the participant’s stated probability and the model’s
generated probability at each decision point in the game.
The model was subjected to a simulation of the game, where
it was presented with the same trajectories and experienced
the same outcomes as participants. At each point where
a Q-value was updated (following a simulation of a leg of
a trajectory), the distance between all participants’ proba-
bility assessments and the estimated Q-value were squared,
aggregated, and added to the total fit.

Table 2: Spillover fits
Fig. 2.b Fig. 2.c Fig. 2.d Fig. 2.e
415.534 415.924 416.122 409.254

In generating the results, we found the best fits to adhere
to Figure 2.e, annotated in Table 2. This indicates that
participants considered negative and positive payouts to be
irrespective of the decision point. Essentially, if a partici-
pant were to lose in sector [1,2] in the 3rd decision point,
they would evaluate sector [1,2] negatively in the 2nd and
4th decision point as well, while also avoiding neighboring
sectors ([1,1], [1,3], and [2,2]) in those time steps as well.

Table 3: Descriptive model: parameters and fits
α φ ǫ Fit
0.819 0.591 0.537 409.254

Table 3 annotates the results from optimizing our Q-learning
function utilizing the Nelder-Mead method. Our compara-
tive analysis between models is described in Table 4. The
descriptive model outperformed the normative model with
p < 0.01. Additionally, the descriptive model had a better
test fit than the random and pathological models.

4.1 Improving Model Predictions
Although our results are significant, improvements can be

made to the predictive capabilities of our model. Humans
not only exhibit cognitive biases in generating their probabil-
ities, but they additionally misrepresent those probabilities
[6]. By including a theoretically sound probability weighting
function, we improve our descriptive model by replicating
this behavior.

3The probability estimations are completely random for
each decision point within a trial.
4Pathological cases include the categorical optimist and pes-
simist (who always guess 100% and 0%, respectively)



(a) (b) (c) (d) (e)

Figure 2: (a) No spillover, (b) local spillover, (c) time step spillover, (d) fractional time step and location
spillover, (e) full time step and location spillover.

Table 4: Fit comparison for all models
Descriptive Normative Random Optimist Pessimist
409.254 416.409 891.182 1052.723 1971.333

4.1.1 Probability Weighting
Prospect theory notes that the weight given to probabil-

ity assertions and the associated payoff values are usually
not linear. That is, humans tend to under- or over-weight
probability assessments in domains of chance. In our do-
main, participants are queried with their assessment for the
overall success of their current trial as it progresses, which
is subject to non-linear assessment mappings. To this end,
we included a subproportional function in the mapping of
Q-values to probability assessments [6].

w(p) = exp(−(−ln(p))β) (8)

Equation 8 defines the subproportional function for a given
probability, p. Between 0 and 1, the exponent β causes the
curve to be inverse sigmoidal. This indicates that proba-
bilities are overweighted when low and underweighted when
high. Inversely, if β is above 1, the curve becomes sigmoidal.
At 1, the curve is linear, which is the normative case. Figure
3 illustrates the curves generated from example values.

4.1.2 Results
We ran the same simulation from the original descriptive

model on the probability weighting descriptive model. As in
the original model, we also compared the augmented model
with the 43 participants from the UAV study, aggregating
fits by squaring the distance from the probability weighting
descriptive model’s Q-values to the participants’ probability
assessments.

Table 5: Descriptive model: parameters and fits
α φ ǫ β Fit
0.677 0.378 0.273 1.573 401.36

Including Prelec’s probability weighting function improved
the performance of the descriptive model. Table 5 describes
the averages for the parameters across folds and the fit gen-
erated by the model. Both α and φ decreased as a result of
the inclusion.

Table 6: Comparative Fits
Descriptive (Weighted) Descriptive (Unweighted)
401.36 409.254

Table 6 shows a side-by-side comparison of the descriptive

model’s fit both with and without the probability weighting
function. A two-tailed T-test of the distance between the
each model version’s generated probability resulted in a sig-
nificant p-value of less than 0.01. Since the weighted model
is a significant improvement over the unweighted model, it
is, transitively, an improvement over the normative model
as well.

5. ANALYSIS

5.1 Parameters
Analysis of the test fits for the descriptive model illumi-

nated some behaviors of human participants in sequential
strategic games. The first observation we made is that the
higher value for β is representative of a decision making
pattern that may be characteristic of win-or-lose strategic
games. Traditionally, in betting games, participants tend
to avoid extreme estimations [6]. However, in the unknown
environment of our particular domain, a cursory glance at
the raw data indicates a predilection towards extreme prob-
ability assessments, which our model corroborates.

The results also indicate a higher preference for exploita-
tion of knowledge in our domain. φ values converged, on
average, near 0.5, with slightly higher α values. A φ value to-
wards 0.38 would indicate that participants’ previous knowl-
edge is deteriorating at a rate of about a third of the reward
from the last time the state was visited. α tuned around
0.677 would indicate a higher rate of exploration as partic-
ipants move through the game. That is, participants are
valuing new information at 68% of its actual reward.

The observation of the ǫ parameter bears discussion, as
well. A spillover rate of 27% is relatively high in comparison
to other implementations of this parameter in reinforcement
learning [2]. This would indicate that participants were at-
tributing around a quarter of the received reward for a sector
to its neighboring sectors.

5.2 Projected probabilities
As with our cursory analysis of the data received from par-

ticipants, plots of the models’ probability estimations were
categorized by wins and losses when compared with the es-
timates made by participants.

Figure 4 plots the average probabilities for trials generated
from the various models (descriptive with weighting, descrip-
tive without weighting, and the normative model) and the
data. Figure 4.a shows a relatively similar curve between
the models and the data, with the descriptive model with
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Figure 3: (a) β = 0.56, (b) β = 1 (linear), (c) β = 1.6
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Figure 4: Trial averages

weighting being the closest in overall distance. For figure
4.b, the shape is also similar to the data, but the descriptive
model with weighting is no longer the closest. As we’ll see
with later plot analysis, the models are less accurate on the
trials that result in a loss, indicative of a different type of
learning and probability assessment in those cases.

Figure 5 shows the plots for the averages of probability
assessments for individual decision points made by partici-
pants and generated by the models for trials that resulted
in a win. Trials that result in wins can be categorized into 3
different trajectory lengths. If the participant’s UAV eventu-
ally reaches the goal sector, it will do so in 4, 6, or 8 moves.
Figure 5.a shows the overall plot for averages of decision
points regardless of the trial type. While the overall fit for
the descriptive model with weighting is the closest, the plot
has a strange shape. This is due to the different amount of
data points for trials of different lengths (e.g. there are only
3 trials of length 8, but there are 11 total trials that result
in a win) and the different types of behavior in the various
trial lengths. Figures5.b, 5.c, and 5.d show the underlying
behavior for trials of each length, with the descriptive model
with weighting outperforming the other models in each case.

Figure 6 shows the plots for averages of probability as-
sessments for the data and models over trials that consist of
losses. These trials break down into 3 and 5 point trials and
are categorized accordingly. As with the plot for the loss
trial averages, the models tend to perform worse on decision
point averages for loss trials. Participants, on average, start
with much lower assessments than with trials that result in
a win. This indicates that participants are better at iden-
tifying eventual losses and retain their pessimism as trials
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Figure 5: Decision point averages (wins)

progress. The models, on the other hand, become progres-
sively more pessimistic. The data for the 5 point trial is
completely flat as there is only one trial that is 5 points in
length (that results in a loss) and the model is not able to
acquire enough information to give an accurate assessment.

5.3 Discussion
The results of the fitting of this model are illuminating.

They are indicative of the relative power of behavioral game
theoretic parameters in a sequential learning model. The
addition of a probability weighting curve further improved
our results.

Though the analysis on reinforcement learning in this do-
main indicates a significant gain from the inclusion of be-
havioral parameters, other competing learning models can
be compared as a baseline for the effectiveness of reinforce-
ment learning in this domain. Several behavioral approaches
to belief-based learning may be applicable to the sequential
strategic game utilized in this paper. Camerer et al. have
proposed alternative models to reinforcement learning in be-
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Figure 6: Decision point averages (losses)

havioral game theory that may beg further investigation.

6. RELATED WORK
Several other models exist that seek to express descrip-

tive learning in human decision making domains. Besides
reinforcement learning, belief learning, experience-weighted
attraction learning, imitation, and direction learning also
represent other approaches to behavioral game theory [1].
Belief learning represents learning as a process of basing fu-
ture considerations on observed behavior in the last round
[3]. In our domain, it is possible for participants to consider
their rewards as dependant on the movement of the enemy,
but, considering the lack of information associated with the
enemy, it is likely that their wins and losses are modeled as
an aspect of the environment.

Erev and Roth also investigate descriptive reinforcement
learning, but it is examined in repeated stage games, not the
sequential domain [8]. Many of the applications of our model
are present in their work, but the concept of uncertainty
and generalizations of strategy are not implemented in their
analysis.

Our work extends observations from Camerer et al.’s Experience-

Weighted Attraction model, though it has similar shortcom-
ings as the Erev and Roth model [2]. This model is con-
textual to stage games, as opposed to the sequential envi-
ronment of the UAV and other strategic problems. Addi-
tionally, the applicability of the law of simulated effect5 is
less pronounced in our model, as the payouts for foregone
strategies are unknown.

5The law of simulated effect states that foregone strategies
that are known to have produced better results if chosen will
have a higher attraction in subsequent games.
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